Расчет количества диффузоров для вентиляции. Большая энциклопедия нефти и газа

Cтраница 4


Авторами были изучены условия образования газовой подушки под секционирующей решеткой и влияние живого сечения перераспределительных решеток на равномерность псевдоожижения.  

Для снижения потери с провалом при большом количестве мелочи в торфе требуется уменьшение живого сечения решетки и соответственное повышение давления дутья.  

Рассмотрение данных табл. 5 показывает, что глубина деструкции практически не зависит от живого сечения решетки, однако степень насыщения водородом при этом повышается, что позволяет увеличить выход дизельного топлива с заданным йодным числом.  


Сумма площадей отверстий в колосниковой решетке для прохода воздуха к слою топлива называется живым сечением решетки. В колосниках, предназначенных для сжигания крупнокускового топлива, живое сечение составляет 25 - 30 % площади решетки.  

Отношение суммарной площади воздушных щелей или отверстий в решетке к ее по иной площади носит название живого сечения решетки. Различают решетки с малым (5 - 15 %) и большим (15 - 40 %) живым сечением. Необходимая величина живого сечения определяется свойствами сжигаемого тбплива.  

С уменьшением числа отверстий в решетке с 223 до 61 при одной и той же площади живого сечения решетки высота подушки остается практически постоянной. Она также не изменяется с увеличением высоты неподвижного слоя на перераспределительной решетке с 270 до 350 мм.  

Потери с провалом Q p относятся к колосниковым решеткам и зависят в основном от конструкции и живого сечения решетки.  

Скорость газа в сечении аппарата принимают обычно в пределах 1 - 3 м / с, а живое сечение решетки выбирают так, чтобы скорость газа в отверстиях составляла 6 - 13 м / с. Уменьшение скорости приводит к нарушению цельности слоя пены, повышение скорости выше указанных пределов резко увеличивает потери из-за брызг.  

Диаметр отверстии верхней решетки составляет 3 мм, расстояние между отверстиями и их число определяются из расчета обеспечения живого сечения решетки в пределах 5 - 7 % от ее общей площади. Таким образом, скорость прохождения воздуха в отверстиях решетки составляет около.  

Окрасочная камера с нижним отсосом и верхней подачей воздуха.| Схема пылеприежника ВЦНИИОТ для заточных станков бункер первой ступени очистки. 3 - отсасывающий патрубок. 4 - неподвижный щиток. 5 - регулируемы щиток.  

Изделие устанавливают на такой высоте над решеткой, чтобы скорость подтекания воздуха была не более скорости его движения в живом сечении решетки. Приточный воздух подают сверху равномерно по всей площади потолка камеры. Следует использовать подшивной потолок, оборудованный фильтрующими кассетами.  

Отношение площади всех зазоров R в колосниковой решетке, через которые поступает в слой воздух, ко всей площади решетки называют живым сечением решетки и обычно выражают в процентах. Необходимый размер живого сечения решетки зависит от рода сжигаемого топлива и крупности кусков. Так, при сжигании кускового торфа и дров применяют балочные колосники.  

, страница 4

(19)

По каталогу производителя принимаем к установке три наружных решетки АРН с защитной сеткой 750х1000, белого цвета – RAL9016: АРН + С 750 х 1000 , с площадью живого сечения = 0,358 м 2 . Суммарное живое сечение трех решеток = 1,074 м 2 .

Скорость воздуха в суммарном живом сечении трех решеток

(20)

Аэродинамическое сопортивление при проходе воздуха через решетки

(21)

где – коэффициент местного сопротивления решетки, принимается по данным производителя, = 2,36

Размеры живого сечения воздухозаборной шахты принимаются исходя из требований (прил. 19 ) к максимально-допустимой скорости движения воздуха в ней.

Найдем площадь живого сечения шахты, исходя из допустимой скорости движения воздуха в ней и геометрических размеров решеток. Значение принимается аналогично (19).

Принимаем размер шахты (по внутреннему обмеру) 1,0х1,2 м . Площадь живого сечени шахты

Скорость воздуха в живом сечении шахты

Динамическое давление при движении воздуха через шахту

КМС решеток

Вид воздухозаборной шахты представлен в графической части проекта.

3.2. Подбор воздушного клапана КВУ

Методика расчета КВУ аналогична расчету воздухозаборной решетки.

Ориентировочную площадь живого сечения принимаем аналогично (18)

По техническим характеристикам с сайта производителя принимаем клапан КВУ 1600х1000 , с площадью живого сечения = 1,48 м 2 .

Принят аналогично сопротивлению дроссельного клапана при угле поворота лопаток 15⁰ .

3.3. Аэродинамический расчет неразветвленного воздуховода

Задачей аэродинамического расчета неразветвленного воздуховода является выявление угла установки регулируемого устройства в каждом приточном отверстии, обеспечивающее истечение в помещение заданного расхода воздуха. При этом определяется: потери давления в воздухораспределителе и максимальное аэродинамическое сопротивление воздуховода и вентиляционной сети в целом.

При установке многостворчатого регулятора расхода на ответвлении (решетка АДН-К ), за пределами магистрального воздуховода практически исключается влияние положения лопаток регулятора расхода на потери давления в транзитном потоке. Для расчета воздуховодов существуют аэродинамические характеристики , учитывающие положение (угол установки) лопаток регуляторов: расхода , направления , и формы струи.

Воздуховод разбивают на отдельные участки с неизменным расходом воздуха по длине. Нумерацию участков начинают с конца воздуховода. Так как в концевой решетке регулятор расхода не устанавливается (устанавливается решетка АДН-К 400х800 ), давление перед второй (или каждой последующей) решеткой известно. С учетом этого определяются расчетные потери давления для нахождения по аэродинамичекой характеристике угла поворота (положени) регулятора расхода.

3.3.1. Методика расчета неразветвленного воздуховода П1

Исходные данные

– 22980 м 3 /ч;

– 3830 м 3 /ч;

– 3,58 м/с;

Расстояние между решетками – 2,93 м;

Угол наклона приточной неполной веерной струи – 27⁰;

Определяем размеры начального сечения воздуховода концевого участка 1-2 (см. графическую часть), стремясь сохранить постоянной его высоту .

Для создания действительно эффективной вентиляционной системы следует решить массу задач, одной из которых является грамотное воздухораспределение. Не акцентируя внимания на этом аспекте при проектировании систем вентиляции и кондиционирования в итоге можно получить повышенную шумность, сквозняки, наличие застойных зон даже в вентиляционных системах с высокими характеристиками эффективности. Важнейшим устройством, влияющим на правильное распределение воздушных потоков по помещению, является воздухораспределитель. В зависимости от монтажа и конструктивных особенностей, эти устройства называют решетками или диффузорами.

Классификация воздухораспределителей

Все воздухораспределители классифицируются:

  • По назначению. Они могут быть приточными, вытяжными и переточными.
  • По степени воздействия на воздушные массы. Эти устройства могут быть перемешивающими и вытесняющими.
  • По монтажу. Воздухораспределители могут применяться для внутренней или наружной установки.

Внутренние диффузоры подразделяются на потолочные, напольные или настенные.

Приточные, в свою очередь, классифицируются по форме исходящей воздушной струи, которая может быть:

  • Вертикальными компактными воздушными струями.
  • Коническими струями.
  • Полными и неполными веерными потоками воздуха.

В этой публикации мы рассмотрим наиболее распространенные диффузоры: потолочные, щелевые, сопловые и низкоскоростные.

Требования, предъявляемые к современным воздухораспределителям

Для многих слово вентиляция является синонимом постоянного фонового шума. Последствия этого хроническая усталость, раздражительность и головная боль. Исходя из этого, воздухораспределитель должен быть тихим.

Кроме этого, не совсем приятно находиться в помещении, если постоянно на себе ощущаешь охлажденные воздушные потоки. Это не только неприятно, но и может привести к болезни, поэтому требование второе: диффузор не должен создавать сквозняков.

Различные обстоятельства часто требуют смены обстановки. Можно поменять мебель или переставить местами офисную технику. Также несложно заказать новый оригинальный дизайн помещения, но сменить воздухораспределители, которые рассчитывались еще на этапе проектирования, достаточно трудно. Из этого «вытекает» требование третье: воздухораспределитель должен быть малозаметен, или как говорят дизайнеры «растворен в интерьере помещения».

Щелевые распределители воздушных потоков

Щелевые диффузоры – это вентиляционное оборудование, предназначенное для подачи свежего и отвода отработанного воздуха из помещений с высокими требованиями к дизайну и качеству воздушной смеси. Для оптимального распределения воздуха, высота потолков при использовании такого оборудования ограничена 4 метрами.

Конструкция приспособления состоит из алюминиевого корпуса с горизонтальными щелевыми отверстиями, количество которых, в зависимости от модели может варьироваться от 1 до 6. Внутрь диффузора монтируется цилиндрический валик, для контроля за направлением движения воздушного потока. Как правило, такие диффузоры оснащены камерой статического давления, для управления расходом воздуха.

Высота щели также может быть различной: от 8 до 25 мм. Длина устройства не регламентирована и может быть от 2 см до 3 м, благодаря чему их можно монтировать в непрерывные линии практически любой формы. Линейные щелевые диффузоры характеризуются хорошими аэродинамическими свойствами, привлекательным дизайном и высокой степенью индукции, благодаря которой происходит быстрый нагрев приточных воздушных потоков. Монтируются такие устройства в подвесных потолках и стеновых конструкциях. Высота монтажа не должна быть менее 2,6 м.

Потолочные диффузоры


Потолочные воздухораспределители могут быть приточными или вытяжными. Эти устройства отличаются: конструкцией, формой, размерами, производительностью, формированием воздушной струи. Кроме того, диффузоры различаются аэродинамическими характеристиками, распределением воздушного потока, а также материалом, из которого они изготовлены.

  • Конструкция этих устройств состоит из декоративной решетки, за которой крепится крыльчатка (если диффузор приточный) и камера статистического давления. В регулируемых «плафонах» есть элементы, направляющие воздушный поток.
  • Форма. Большинство потолочных диффузоров имеют круглую или квадратную форму. Но не следует забывать, что и щелевые воздухораспределители также считаются потолочными, а они имеют прямоугольную форму.
  • Размеры круглых распределителей воздуха варьируются от 10 см до 60 см. Для квадратных — от 15х15 см. до 90х90 см.
  • Способ монтажа. Устанавливаются в подвесной потолок, врезаются в панель из гипсокартона или монтируются в натяжной потолок при помощи дополнительных колец.
  • Потолочные диффузоры формируют веерные, турбулентные, вихревые, конические и сопловые воздушные потоки.
  • Распределение воздуха в этих приспособлениях может варьироваться по разным сторонам (в квадратных приточных) или быть круговым.

Чаще всего эти устройства используют в жилых и офисных помещениях, магазинах, а также ресторанах и местах общественного питания.


Сопловые диффузоры


Воздухораспределители сопловые используются для подачи потоков чистого воздуха на дальние дистанции. Для увеличения дальности воздушного потока, сопловые распределители объединяют в блоки, которые могут иметь различную форму и быть выполнены из различных материалов.

По конструкции сопловые диффузоры могут иметь подвижные и неподвижные сопла, которые имеют оптимальный профиль, обеспечивающий низкое аэродинамическое сопротивление и малый уровень шума. Этот тип распределителей воздушных потоков монтируется на поверхность при помощи клея, саморезов или заклепок, а некоторые модели могут устанавливаться непосредственно в круглый воздуховод.

Эти приспособления изготавливаются из анодированного алюминия, что позволяет использовать их для распределения нагретого воздуха и воздушных масс повышенной влажности. Применяются такие приспособления в вентиляционных системах производственных предприятий, коммерческих сооружениях, парковках и т.д.

Низкоскоростные диффузоры


Воздухораспределители низкоскоростные работают по принципу вытеснения загрязненного воздуха из обслуживаемого помещения. Они предназначены для подачи чистого воздуха непосредственно в зону обслуживания, с низкой скоростью воздушного потока и малым температурным перепадом между притоком и воздушной смесью помещения. Эти устройства различаются по способу установки, форме, размерам и конструкции.

Существует несколько разновидностей низкоскоростных распределителей воздуха:

  • Настенные.
  • Напольные.
  • Встраиваемые.

Напольные и настенные низкоскоростные диффузоры предназначены для малых, средних и больших показателей расхода воздуха. Чаще всего их устанавливают под сидениями в кинотеатрах, больших концертных и учебных помещениях, магазинах, музеях, спортивных сооружениях. Встраиваемые, напольные устройства могут монтироваться в лестничные пролеты и ступеньки.

Низкоскоростные приспособления изготавливаются из покрытого порошковой краской металла или анодированного алюминия. Состоит устройство из наружной и внутренней обечайки и корпуса с подводящим патрубком. Некоторые модели распределителей могут оснащаться поворотными форсунками для регулирования направления воздушного потока.

Расчет диффузоров

Расчет воздухораспределителей достаточно сложный, но необходимый процесс, который заключается в выборе устройства, отвечающего следующим требованиям:

  • Скорость выхода приточного воздушного потока должна быть оптимальной.
  • Перепад температур воздушного потока на входе в рабочую зону должен быть минимальным.

Алгоритм расчета

  • Изначально производится расчет подачи воздушной смеси для помещения определенных размеров и архитектурной формы, с заданной производительностью L п (м3/ч) и перепадом температур приточного воздуха Δt 0 (°С); высотой монтажа устройства h (м) и другими характеристиками распределения воздуха.
  • По допустимым параметрам скорости движения воздушных масс Uд (м/с) и разницы температур между приточным воздухом и воздухом на входе в рабочую зону, определяется скорость и количество воздуха, подаваемого из одного диффузора.
  • После, рассчитывается необходимое расположение и количество устройств необходимых для оптимального воздухораспределения в конкретном помещении.

Совет:
Если вы не имеете специальных инженерных знаний, то для правильного расчета воздухораспределителей, обращайтесь в организации, специализирующиеся на этом виде деятельности. Если вы решили самостоятельно заняться расчетами, то воспользуйтесь специализированным программным обеспечением.